"); //-->
1. 引言
模型压缩常用的方案包括量化、蒸馏、轻量化网络、网络剪枝(稀疏化)等,详细介绍可见文章:
。最近在学习地平线提供的轻量化网络结构 HENet,结合几年前整理的 mobilenetv3、Efficnertnet 放在一块进行介绍。轻量化网络旨在减少模型参数和计算量,同时保持较高准确率。为了降低设备能耗,提升实时性,轻量化网络结构在嵌入式设备等资源受限环境中广泛应用。
2. 经典轻量化网络结构
2.1 MobileNetV3
SE 模块类似注意力机制,通过全局平均池化和两个全连接层,计算每个通道的权重系数,自适应调整特征。SE 模块细节介绍如下
此外,还更换激活函数为 hardswish 和 relu,前者计算速度快且对量化过程友好,最后 1x1 降维投影层使用线性激活,整体提升计算效率和量化友好性。 具体代码介绍,可见文章:
。2.2 EfficientNet
1. 总体介绍:利用 NAS 技术,综合考虑输入分辨率、网络深度和宽度,平衡三者关系,构建高效网络。通过调整宽度系数和深度系数,改变网络的通道数和层数,有 EfficientNet-B0 到 B7 多个变体,EfficientNet-B0 作为基础版本,B1 - B7 在其基础上逐渐增加复杂度和性能。
2. MBConv 结构:包含 1x1 普通卷积(升维)、kxk 深度卷积(3x3 或 5x5)、SE 模块、1x1 普通卷积(降维)和 Dropout 层。SE 模块中第一个全连接层节点个数是输入特征矩阵通道数的 1/4,使用 Swish 激活函数;第二个全连接层节点个数等于深度卷积层输出通道数,使用 Sigmoid 激活函数。
具体代码介绍,可见文章:
。3. HENet:地平线的高效轻量化网络
理论部分,
介绍的很好!下面不会过多介绍,重点在代码使用。
HENet(Hybrid Efficient Network)是针对地平线 征程 6 系列芯片设计的高效网络。
3.1 HENet_TinyM 理论简介
采用纯 CNN 架构,分为四个 stage,每个 stage 进行一次 2 倍下采样。通过不同的参数配置,如 depth、block_cls、width 等,构建高效的特征提取网络。
DWCB:主分支使用 3x3 深度卷积融合空间信息,两个连续的点卷积融合通道信息,借鉴 transformer 架构,在残差分支添加可学习的 layer_scale,平衡性能与计算量。
GroupDWCB:基于 DWCB 改进,将主分支第一个点卷积改为点分组卷积,在特定条件下可实现精度无损且提速(实验中观察到,当满足 ① channel 数量不太小 ② 较浅的位层 两个条件时,GroupDWCB 可以达到精度无损,同时提速的效果),在 TinyM 的第二个 stage 使用(g = 2)。
AltDWCB:DWCB 的变种,将深度卷积核改为(1,5)或(5,1)交替使用,在第三个 stage 使用可提升性能,适用于层数较多的 stage。
2.下采样方式:S2DDown 使用 space to depth 操作降采样,利用 征程 6 系列芯片对 tensor layout 操作的高效支持,快速完成降采样,改变特征的空间和通道维度。(自己设计时,谨慎使用 S2DDown 降采样方法。)
自行构建有效基础 block:构建 baseline 时,可先使用 DWCB,再尝试 GroupDWCB/AltDWCB 结构提升性能。
3.2 性能/精度数据对比
从帧率和精度数据来看,HENet_TinyM 和 HENet_TinyE 在 J6 系列芯片上表现出色,与其他经典轻量化网络相比,在保证精度的同时,具有更高的帧率,更适合实际应用。
3.3 HENet_TinyM 代码详解
HENet 源码在地平线 docker 路径:/usr/local/lib/python3.10/dist-packages/hat/models/backbones/henet.py
HENet_TinyM 总体分为四个 stage,每个 stage 会进行一次 2 倍下采样。以下是总体的结构配置:
# ---------------------- TinyM ---------------------- depth = [4, 3, 8, 6] block_cls = ["GroupDWCB", "GroupDWCB", "AltDWCB", "DWCB"] width = [64, 128, 192, 384] attention_block_num = [0, 0, 0, 0] mlp_ratios, mlp_ratio_attn = [2, 2, 2, 3], 2 act_layer = ["nn.GELU", "nn.GELU", "nn.GELU", "nn.GELU"] use_layer_scale = [True, True, True, True] final_expand_channel, feature_mix_channel = 0, 1024 down_cls = ["S2DDown", "S2DDown", "S2DDown", "None"]
参数含义:
depth:每个 stage 包含的 block 数量
block_cls:每个 stage 使用的基础 block 类型
width:每个 stage 中 block 的输出 channel 数
attention_block_num:每个 stage 中的 attention_block 数量,将用在 stage 的尾部(TinyM 中没有用到)
mlp_ratios:每个 stage 中的 mlp 的通道扩增系数
act_layer:每个 stage 使用的激活函数
use_layer_scale:是否对 residual 分支进行可学习的缩放
final_expand_channel:在网络尾部的 pooling 之前进行 channel 扩增的数量,0 代表不使用扩增
feature_mix_channel :在分类 head 之前进行 channel 扩增的数量
down_cls:每个 stage 对应的下采样类型
代码解读:
from typing import Sequence, Tuple import horizon_plugin_pytorch.nn as hnn import torch import torch.nn as nn from horizon_plugin_pytorch.quantization import QuantStub from torch.quantization import DeQuantStub # 基础模块的代码,可见地平线提供的OE docker # /usr/local/lib/python3.10/dist-packages/hat/models/base_modules/basic_henet_module.py from basic_henet_module import ( BasicHENetStageBlock, # HENet 的基本阶段块 S2DDown, # 降采样(downsampling)模块 ) from basic_henet_module import ConvModule2d # 2D 卷积层模块 # 继承 torch.nn.Module,定义神经网络的标准方式 class HENet(nn.Module): """ Module of HENet. Args: in_channels: The in_channels for the block. block_nums: Number of blocks in each stage. embed_dims: Output channels in each stage. attention_block_num: Number of attention blocks in each stage. mlp_ratios: Mlp expand ratios in each stage. mlp_ratio_attn: Mlp expand ratio in attention blocks. act_layer: activation layers type. use_layer_scale: Use a learnable scale factor in the residual branch. layer_scale_init_value: Init value of the learnable scale factor. num_classes: Number of classes for a Classifier. include_top: Whether to include output layer. flat_output: Whether to view the output tensor. extra_act: Use extra activation layers in each stage. final_expand_channel: Channel expansion before pooling. feature_mix_channel: Channel expansion is performed before head. block_cls: Basic block types in each stage. down_cls: Downsample block types in each stage. patch_embed: Stem conv style in the very beginning. stage_out_norm: Add a norm layer to stage outputs. Ignored if include_top is True. """ def __init__( self, in_channels: int, # 输入图像的通道数(常见图像为 3) block_nums: Tuple[int], # 每个阶段(Stage)的基础块(Block)数量 embed_dims: Tuple[int], # 每个阶段的特征通道数 attention_block_num: Tuple[int], # 每个阶段的注意力块(Attention Block)数量 mlp_ratios: Tuple[int] = (2, 2, 2, 2), # 多层感知机(MLP)扩展比率 mlp_ratio_attn: int = 2, act_layer: Tuple[str] = ("nn.GELU", "nn.GELU", "nn.GELU", "nn.GELU"), # 激活函数类型 use_layer_scale: Tuple[bool] = (True, True, True, True), layer_scale_init_value: float = 1e-5, num_classes: int = 1000, include_top: bool = True, # 是否包含最终的分类头(通常为 nn.Linear) flat_output: bool = True, extra_act: Tuple[bool] = (False, False, False, False), final_expand_channel: int = 0, feature_mix_channel: int = 0, block_cls: Tuple[str] = ("DWCB", "DWCB", "DWCB", "DWCB"), down_cls: Tuple[str] = ("S2DDown", "S2DDown", "S2DDown", "None"), patch_embed: str = "origin", # 图像预处理方式(卷积 embedding) stage_out_norm: bool = True, # 是否在阶段输出后加一层 BatchNorm,建议不要 ): super().__init__() self.final_expand_channel = final_expand_channel self.feature_mix_channel = feature_mix_channel self.stage_out_norm = stage_out_norm self.block_cls = block_cls self.include_top = include_top self.flat_output = flat_output if self.include_top: self.num_classes = num_classes # patch_embed 负责将输入图像转换为特征 # 里面有两个convModule2d,进行了两次 3×3 的卷积(步长 stride=2),相当于 对输入图像进行 4 倍降采样 if patch_embed in ["origin"]: self.patch_embed = nn.Sequential( ConvModule2d( in_channels, embed_dims[0] // 2, kernel_size=3, stride=2, padding=1, norm_layer=nn.BatchNorm2d(embed_dims[0] // 2), act_layer=nn.ReLU(), ), ConvModule2d( embed_dims[0] // 2, embed_dims[0], kernel_size=3, stride=2, padding=1, norm_layer=nn.BatchNorm2d(embed_dims[0]), act_layer=nn.ReLU(), ), ) stages = [] # 构建多个阶段 (Stages),存放多个 BasicHENetStageBlock,每个block处理不同通道数的特征。 downsample_block = [] # 存放 S2DDown,在每个阶段之间进行降采样。 for block_idx, block_num in enumerate(block_nums): stages.append( BasicHENetStageBlock( in_dim=embed_dims[block_idx], block_num=block_num, attention_block_num=attention_block_num[block_idx], mlp_ratio=mlp_ratios[block_idx], mlp_ratio_attn=mlp_ratio_attn, act_layer=act_layer[block_idx], use_layer_scale=use_layer_scale[block_idx], layer_scale_init_value=layer_scale_init_value, extra_act=extra_act[block_idx], block_cls=block_cls[block_idx], ) ) if block_idx < len(block_nums) - 1: assert eval(down_cls[block_idx]) in [S2DDown], down_cls[ block_idx ] downsample_block.append( eval(down_cls[block_idx])( patch_size=2, in_dim=embed_dims[block_idx], out_dim=embed_dims[block_idx + 1], ) ) self.stages = nn.ModuleList(stages) self.downsample_block = nn.ModuleList(downsample_block) if final_expand_channel in [0, None]: self.final_expand_layer = nn.Identity() self.norm = nn.BatchNorm2d(embed_dims[-1]) last_channels = embed_dims[-1] else: self.final_expand_layer = ConvModule2d( embed_dims[-1], final_expand_channel, kernel_size=1, bias=False, norm_layer=nn.BatchNorm2d(final_expand_channel), act_layer=eval(act_layer[-1])(), ) last_channels = final_expand_channel if feature_mix_channel in [0, None]: self.feature_mix_layer = nn.Identity() else: self.feature_mix_layer = ConvModule2d( last_channels, feature_mix_channel, kernel_size=1, bias=False, norm_layer=nn.BatchNorm2d(feature_mix_channel), act_layer=eval(act_layer[-1])(), ) last_channels = feature_mix_channel # 分类头 if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # 将特征图变为 1×1 self.head = ( nn.Linear(last_channels, num_classes) if num_classes > 0 else nn.Identity() ) else: stage_norm = [] for embed_dim in embed_dims: if self.stage_out_norm is True: stage_norm.append(nn.BatchNorm2d(embed_dim)) else: stage_norm.append(nn.Identity()) self.stage_norm = nn.ModuleList(stage_norm) self.up = hnn.Interpolate( scale_factor=2, mode="bilinear", recompute_scale_factor=True ) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) if isinstance(x, Sequence) and len(x) == 1: x = x[0] # 依次经过 patch_embed、stages、downsample_block 处理特征图。 x = self.patch_embed(x) outs = [] for idx in range(len(self.stages)): x = self.stages[idx](x) if not self.include_top: x_normed = self.stage_norm[idx](x) if idx == 0: outs.append(self.up(x_normed)) outs.append(x_normed) if idx < len(self.stages) - 1: x = self.downsample_block[idx](x) if not self.include_top: return outs if self.final_expand_channel in [0, None]: x = self.norm(x) else: x = self.final_expand_layer(x) x = self.avgpool(x) x = self.feature_mix_layer(x) x = self.head(torch.flatten(x, 1)) x = self.dequant(x) if self.flat_output: x = x.view(-1, self.num_classes) return x # ---------------------- TinyM ---------------------- depth = [4, 3, 8, 6] block_cls = ["GroupDWCB", "GroupDWCB", "AltDWCB", "DWCB"] width = [64, 128, 192, 384] attention_block_num = [0, 0, 0, 0] mlp_ratios, mlp_ratio_attn = [2, 2, 2, 3], 2 act_layer = ["nn.GELU", "nn.GELU", "nn.GELU", "nn.GELU"] use_layer_scale = [True, True, True, True] extra_act = [False, False, False, False] final_expand_channel, feature_mix_channel = 0, 1024 down_cls = ["S2DDown", "S2DDown", "S2DDown", "None"] patch_embed = "origin" stage_out_norm = False # 初始化 HENet 模型 model = HENet( in_channels=3, # 假设输入是 RGB 图像 block_nums=tuple(depth), embed_dims=tuple(width), attention_block_num=tuple(attention_block_num), mlp_ratios=tuple(mlp_ratios), mlp_ratio_attn=mlp_ratio_attn, act_layer=tuple(act_layer), use_layer_scale=tuple(use_layer_scale), extra_act=tuple(extra_act), final_expand_channel=final_expand_channel, feature_mix_channel=feature_mix_channel, block_cls=tuple(block_cls), down_cls=tuple(down_cls), patch_embed=patch_embed, stage_out_norm=stage_out_norm, num_classes=1000, # 假设用于 ImageNet 1000 类分类 include_top=True, ) # ---------------------- 处理单帧输入数据 ---------------------- # 生成一个随机图像张量,假设输入是 224x224 RGB 图像 input_tensor = torch.randn(1, 3, 224, 224) # [batch, channels, height, width] # ---------------------- 进行推理 ---------------------- model.eval() with torch.no_grad(): # 关闭梯度计算,提高推理速度 output = model(input_tensor) # ---------------------- 输出结果 ---------------------- print("模型输出形状:", output.shape) print("模型输出类型:", type(output)) print("模型输出长度:", len(output)) print(output) print("预测类别索引:", torch.argmax(output, dim=1).item()) # 获取最大概率的类别索引 # 输出 FLOPs 和 参数量 from thop import profile flops, params = profile(model, inputs=(input_tensor,)) print(f"FLOPs: {flops / 1e6:.2f}M") # 以百万次运算(MFLOPs)显示 print(f"Params: {params / 1e6:.2f}M") # 以百万参数(M)显示
4. 基于 block 构建网络
可参考如下代码构建:
import torch from torch import nn from torch.quantization import DeQuantStub from typing import Union, Tuple, Optional from horizon_plugin_pytorch.nn.quantized import FloatFunctional as FF from torch.nn.parameter import Parameter from horizon_plugin_pytorch.quantization import QuantStub class ChannelScale2d(nn.Module): """对 Conv2d 的输出特征图进行线性缩放""" def __init__(self, num_features: int) -> None: super().__init__() self.num_features = num_features self.weight = Parameter(torch.ones(num_features)) # 初始化权重为1 self.weight_quant = QuantStub() def forward(self, input: torch.Tensor) -> torch.Tensor: return input * self.weight_quant(self.weight).reshape(self.num_features, 1, 1) class ConvModule2d(nn.Module): """标准的 2D 卷积块,包含可选的归一化层和激活层""" def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", norm_layer: Optional[nn.Module] = None, act_layer: Optional[nn.Module] = None, ): super().__init__() layers = [nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode)] if norm_layer: layers.append(norm_layer) if act_layer: layers.append(act_layer) self.block = nn.Sequential(*layers) def forward(self, x): return self.block(x) class GroupDWCB(nn.Module): """分组深度可分离卷积块""" def __init__( self, dim: int, hidden_dim: int, kernel_size: int = 3, act_layer: str = "nn.ReLU", use_layer_scale: bool = True, extra_act: Optional[bool] = False, ): super().__init__() self.extra_act = eval(act_layer)() if extra_act else nn.Identity() group_width_dict = { 64: 64, 128: 64, 192: 64, 384: 64, 256: 128, 48: 48, 96: 48, } group_width = group_width_dict.get(dim, 64) self.dwconv = ConvModule2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=dim, norm_layer=nn.BatchNorm2d(dim)) self.pwconv1 = nn.Conv2d(dim, hidden_dim, kernel_size=1, groups=dim // group_width) self.act = eval(act_layer)() self.pwconv2 = nn.Conv2d(hidden_dim, dim, kernel_size=1) self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale = ChannelScale2d(dim) self.add = FF() def forward(self, x): input_x = x x = self.dwconv(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.use_layer_scale: x = self.add.add(input_x, self.layer_scale(x)) else: x = self.add.add(input_x, x) x = self.extra_act(x) return x class CustomModel(nn.Module): """完整的模型""" def __init__(self, d_model=256, output_channels=2): super().__init__() self.encoder_layer = nn.Sequential( GroupDWCB(dim=d_model, hidden_dim=d_model, kernel_size=3, act_layer="nn.ReLU"), GroupDWCB(dim=d_model, hidden_dim=d_model, kernel_size=3, act_layer="nn.ReLU"), ) self.out_layer = nn.Sequential( ConvModule2d(in_channels=d_model, out_channels=d_model, kernel_size=1), nn.BatchNorm2d(d_model), nn.ReLU(inplace=True), ConvModule2d(in_channels=d_model, out_channels=output_channels, kernel_size=1), ) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.encoder_layer(x) x = self.out_layer(x) x = self.dequant(x) return x # =================== 输入参数 =================== # d_model = 64 output_channels = 10 model = CustomModel(d_model=d_model, output_channels=output_channels) # 生成输入 input_tensor = torch.randn(1, 64, 300, 200) # 前向传播 output = model(input_tensor) print("The shape of output is:", output.shape) # 输出 FLOPs 和 参数量 from thop import profile flops, params = profile(model, inputs=(input_tensor,)) print(f"FLOPs: {flops / 1e6:.2f}M") # 以百万次运算(MFLOPs)显示 print(f"Params: {params / 1e6:.2f}M") # 以百万参数(M)显示
输出信息如下:
The shape of output is: torch.Size([1, 10, 300, 200]) FLOPs: 1382.40M Params: 0.02M
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。